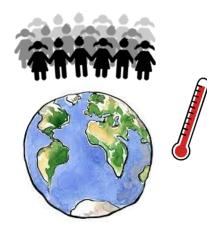
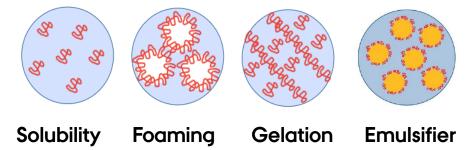

FØDEVARER FRA GRØN BIOMASSE



GREEN BIOMASS – SUSTAINABLE PROTEIN AND INGREDIENTS

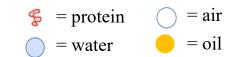
WHAT IS MOSTLY NEEDED?

- Dietary transistion towards plant-based food
- Sustainable production of high-quality protein
 - Plant-based
 - Local sources



WHAT MATTERS?

- Functionality and taste
- = Protein = Water = Air = Oil


- Nutritional value
 - Amino acid composition
 - Bioavailability

IS THIS NEEDED?

Gelling

Cheap high quality protein

AARHUS

UNIVERSITY

DEPARTMENT OF FOOD SCIENCE

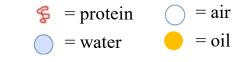
Cheap high quality protein

• White tasteless powder

AARHUS

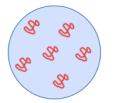
JNIVERSITY

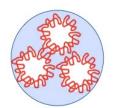
DEPARTMENT OF FOOD SCIENCE

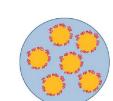


Cheap high quality protein

- White tasteless powder ۲
- High solubility and good functional properties ۲

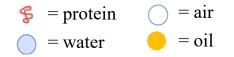

Solubility

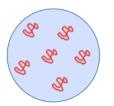

Foaming


Emulsification

Gelling

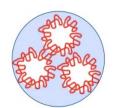
CBIO




Cheap high quality protein

- White tasteless powder ۲
- High solubility and good functional properties ۰
- High nutritional value
- Low in antinutrients

EPARTMENT OF FOOD SCIENCE



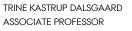
Foaming

Gelling

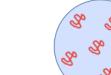
CBIO

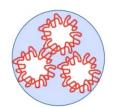
Solubility

Emulsification

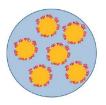


Cheap high quality protein


- White tasteless powder ۲
- High solubility and good functional properties
- High nutritional value
- Low in antinutrients
- Easy to handle and process



= protein = air= oil = water



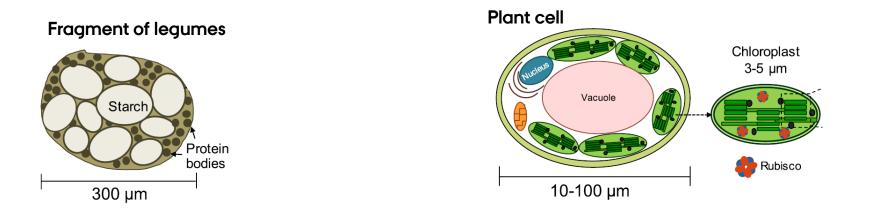
Emulsification

Solubility

Foaming

Gelling

CHALLENGES AND NEEDS

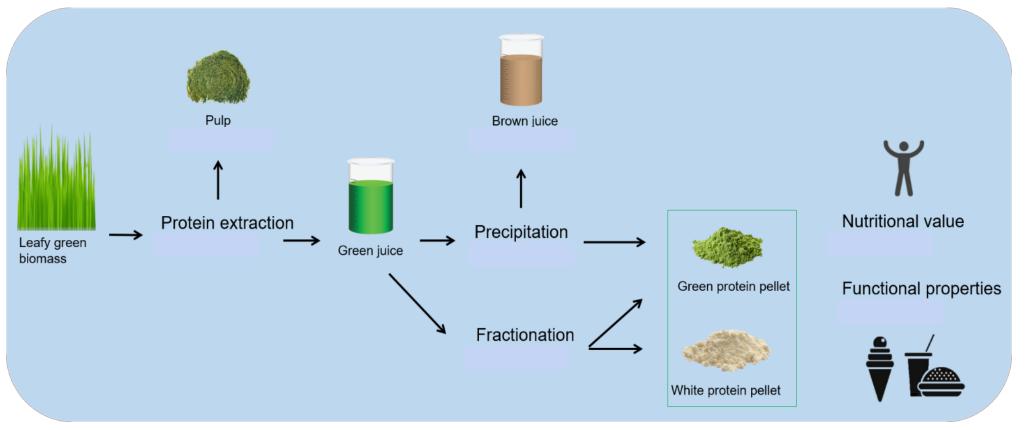

Biorefinery

ARHUS

INIVERSITY

DEPARTMENT OF FOOD SCIENCE

Optimization of technologies - differs between biomasses


Tenorio et al. 2018 Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass - Consequences for industrial use

PROTEIN EXTRACTION – WHY DO WE PROCESS?

Møller et al., 2021: <u>https://doi.org/10.1021/acs.jafc.1c04289</u>

EXAMPLES OF NOVEL BIOMASSES FOR FOOD PROTEIN

- Underexploited biomass
- Upcycle from feed to food

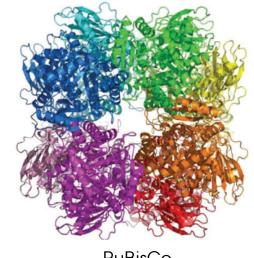
WHY PERENNEIAL GRASSES AND LEGUMES?

Why leafy legumes and perennial grasses?

- High biomass yield
- Carbon sequestration and low nutrient leaching
- Main protein: RuBisCo
- Essential amino acids

• Alfalfa, clovers, ryegrass...

AARHUS UNIVERSITY DEPARTMENT OF FOOD SCIENCI



HIGH-QUALITY PROTEIN?

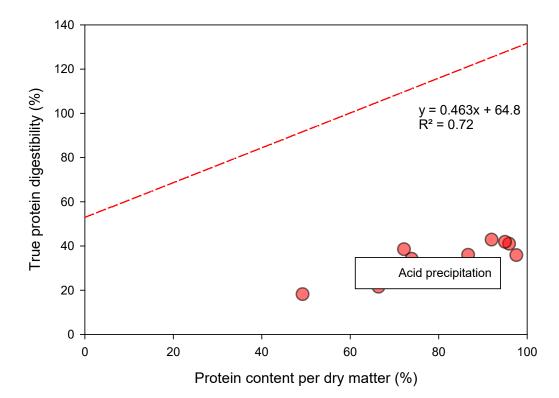
- Essential amino acids: Lysine and methione often limiting in plants
- RuBisCo fulfills the amino acid recommendation from FAO/WHO
 - RuBisCo constitute up till 60 % of the soluble protein fraction

Amino acid (g / 100 g protein)	RuBisCo^	Alfalfa protein concentrate (40% of DM)#	Fao/Who
Lysine	6.5	8.5	5.7
Threonine	5.3	6.3	3.1
Cysteine + methionine	3.4	6.3	2.7
Valine	6.7	7.0	4.3
Isoleucine	4.9	5.7	3.2
Leucine	9.4	11.0	6.6
Phenylalanine + tyrosine	12.8	7.3*	5.2
Histidine	3.9	3.1	2.0

RuBisCo

[^]Møller et al. (2021). Biorefinery of green biomass – how to extract and evaluate high quality leaf protein for food? *J. Agric. Food Chem.* 69 (48), 14341 – 14357 <u>https://doi.org/10.1021/acs.jafc.1c04289</u>

, #Nissen et al. (2022). Protein recovery and quality of alfalfa extracts obtained by acid precipitation and fermentation. *Bioresource Technology Reports* <u>https://doi.org/10.1016/j.biteb.2022.101190</u>



PROTEIN CONTENT – PROTEIN DIGESTIBILITY

- Protein extraction to increase concentration and digestibility
 - Remove fibers and antinutritional factors

Møller et al., 2021: <u>https://doi.org/10.1021/acs.jafc.1c04289</u>

EXAMPLES OF ANTINUTRIENTS

Anti-nutritional factors

Saponins

Phytic acid

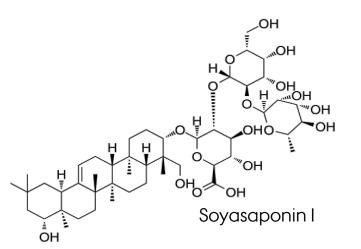
Lectin

Protease inhibitor

Others.....

SAPONINS

Anti-nutritional factors

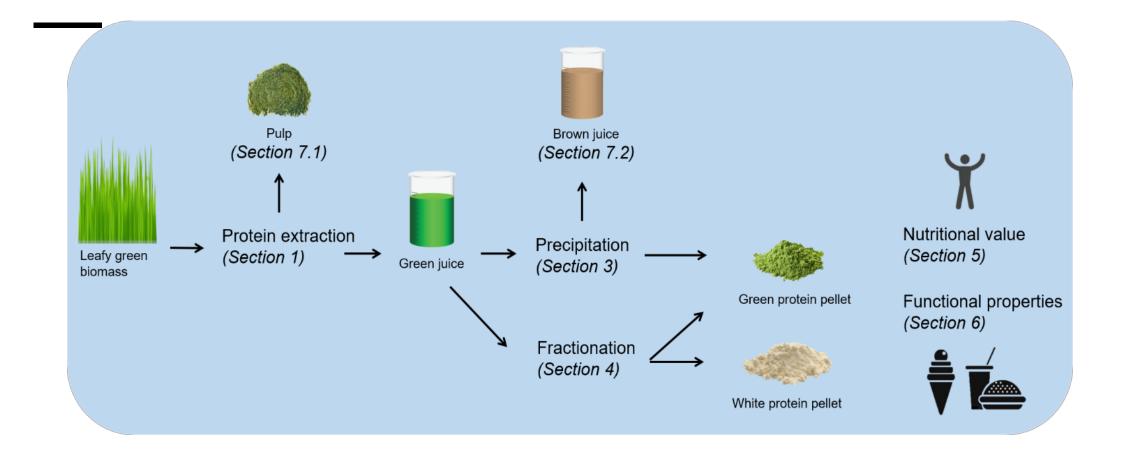

Saponins

Phytic acid

Lectin

Protease inhibitor

Others.....



STUDIES FROM GREEN BIOMASS – FOOD PROTEIN

Institute of fst

International Journal of Food Science and Technology 2020

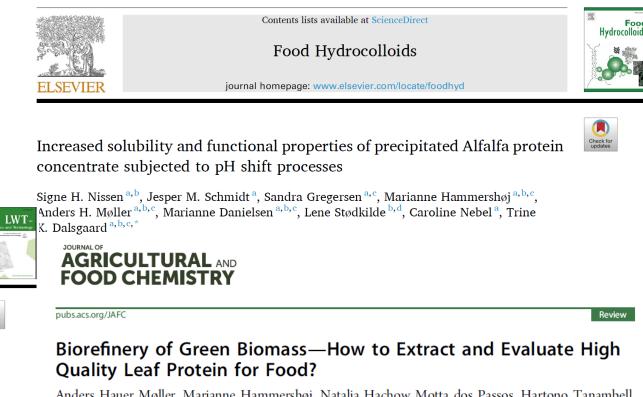
Original article Improved solubility of proteins from white and red clover – inhibition of redox enzymes

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/lwt

MDPI

RuBisCO from alfalfa – native subunits preservation through sodium sulfite addition and reduced solubility after acid precipitation followed by freeze-drying


Hartono Tanambell ^{a,b}, Anders Hauer Møller ^{a,b,c}, Milena Corredig ^{a,b}, Trine Kastrup Dalsgaard ^{a,b,c,*}

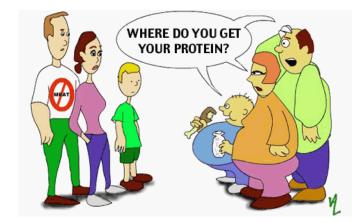
Article

Simultaneous Determination of L- and D-Amino Acids in Proteins: A Sensitive Method Using Hydrolysis in Deuterated Acid and Liquid Chromatography–Tandem Mass Spectrometry Analysis

Marianne Danielsen ^{1,2,*}, Caroline Nebel ¹ and Trine Kastrup Dalsgaard ^{1,2,3}

Anders Hauer Møller, Marianne Hammershøj, Natalia Hachow Motta dos Passos, Hartono Tanambell, Lene Stødkilde, Morten Ambye-Jensen, Marianne Danielsen, Søren K. Jensen, and Trine K. Dalsgaard*

Protein recovery and quality of alfalfa extracts obtained by acid precipitation and fermentation



Signe Hjerrild Nissen $^{\rm a,c,}$, Mette Lübeck $^{\rm b},$ Anders Hauer Møller $^{\rm a,c,d},$ Trine Kastrup Dalsgaard $^{\rm a,c,d,*}$

ACKNOWLEDGMENTS

